化学工程联合国家重点实验室  
首页 关于我们 研究人员 研究方向 研究设施 研究成果 合作与交流 实验室动态 规章制度 联系我们
 
 
 
 


姓名:周兴贵
职称:教授
职务:化学工程联合国家重点实验室华东理工大学分室主任
所属单位:华东理工大学
电话:021-64253509
传真:021-64253528
电子邮件:xgzhou@ecust.edu.cn
网页:http://skloche.ecust.edu.cn/xgzhou

教育背景:
1995/09-1996/01,美国弗吉尼亚大学,博士联合培养
1993/01-1996/06,华东理工大学,化学工程系,博士
1990/09-1992/12,华东理工大学,化学工程系,硕士
1983/09-1987/07,华东理工大学,化学工程系,本科

工作经历:
2010/01-至今,化学工程联合国家重点实验室华东理工大学分室主任
2008/01-至今,“化学反应工程科学与技术”学科创新引智基地负责人
2002/05-2002/08,法国里昂 CPE,高访
2001/01-至今,华东理工大学,化工学院化学工程系,教授
1998/01-2000/12,华东理工大学,化工学院化学工程系,副教授
1996/06-1997/12,华东理工大学,化工学院化学工程系,讲师

研究方向:
催化反应工程,反应过程强化与优化,晶体结构与形态调控

学术要点:
1.催化反应工程
微观反应动力学:通过密度泛函理论计算研究非均相催化剂表面反应机理,表面结构与催化剂性能关系;通过基元反应网络集成构建微观反应动力学,确定主要反应路径、表面最丰物种、速率控制步骤,以及可进行实验验证的表观活化能与反应级数;建立考虑催化剂结构参数的催化反应动力学。
催化剂孔结构优化:研究多孔催化材料孔结构模型化方法,和以孔结构模型为基础的反应扩散模型。研究孔结构参数的统计分布和空间分布对催化剂表观反应性能的影响;研究不同扩散机制和毛细效应对吸附、反应行为的影响。研究催化剂孔结构优化方法。
催化剂结构调控:研究催化材料(包括纳米碳材料、分子筛等)制备过程中的结构形成和演化机制,和催化材料多尺度结构(包括形态、晶相与表面结构)的调控方法。重点研究金属-分子筛催化剂介尺度结构形成的控制机制、以及结构演化过程预测与调控的非平衡热力学方法。
2、反应过程强化与优化
反应过程强化:通过催化剂功能复合(如使用金属-分子筛双功能催化剂)强化反应过程,简化工艺,提高目标产物收率;通过反应过程耦合(如耦合脱氢和氢氧化反应)实现反应热平衡、提高单程转化率;通过催化剂结构设计(如使用纳米沸石、或多级孔道沸石等)减缓传质阻力,提高催化剂稳定性。
传递过程强化:研究以构型理论为基础的流体均布与混合方法,微通道内的沉积与溶解动力学;研究以微流体技术为基础、进行危险反应过程、或合成危险化学品的化工过程集成技术;研究大型反应器内流体均布与混合强化方法。
反应过程优化:研究具有非定态特征的反应过程(如催化剂失活过程、间歇反应过程等)的模型化与优化方法。
3、晶体结构与形态调控
药物结晶:研究药物分子结晶过程中溶剂与杂质对晶体生长动力学和晶体形态的影响;研究溶质分子在溶液中的聚集形态、及其对成核与生长动力学的影响;研究晶体多晶型的转化规律及调控。
分子筛可控合成:研究分子筛的成核与生长动力学、以及结构导向剂对分子筛粒径、介孔结构等的影响,分子筛生长过程中对金属前驱物的包埋作用。

荣誉和奖励:
1999年全国优秀博士论文获得者,1999年上海市优秀青年教师,2001年上海市教育委员会“曙光”学者,2005年教育部新世纪优秀人才。
2009年来作为负责人承担了973课题、863重点课题、自然科学基金重点项目等一批重要项目和课题。发表SCI收录论文91篇(其中JCR一区论文15篇,二区论文22篇。化工Top期刊9篇),EI收录论文90篇;公开专利29项、获授权专利17项;参编专著4部,其中有Elsevier,RSC和Springer出版专著或丛书各一部。在德国马普协会复杂系统动力学研究所、比利时根特大学、诺华制药科技有限公司、DSM中国研究中心等做特邀报告9次。获2009年中石化科技进步二等奖、2009年上海市教学成果一等奖。2014 Joint Congress of ACTS-2014 and CGOM11科学委员会成员;MaCKiE-2013 科学委员会成员;ACTS-2012科学委员会成员。现任化学工程联合国家重点实验室(华东理工大学)主任,“化学反应工程科学与技术”创新引智基地负责人,《化学反应工程与工艺》副主编,《Chin. J Chem. Eng.》编委。

代表性论文:
[1]Y.C. Zhang, K.K. Zhu, X.Z. Duan, P. Li, X.G. Zhou, W.K. Yuan, Synthesis of hierarchical ZSM-5 zeolite using CTAB interacting with carboxyl-ended organosilane as a mesotemplate, Rsc Adv. 2014, 4: 14471-14474.
[2]M. Yu, K. Zhu, Z. Liu, H. Xiao, W. Deng, X. Zhou, Carbon dioxide reforming of methane over promoted NixMg1?xO (111) platelet catalyst derived from solvothermal synthesis, Appl. Catal. B 2014, 148: 177-190.
[3]Z.T. Liu, X.Z. Duan, X.G. Zhou, G. Qian, J.H. Zhou, W.K. Yuan, Controlling and Formation Mechanism of Oxygen-Containing Groups on Graphite Oxide, Ind. Eng. Chem. Res. 2014, 53: 253-258.
[4]X. Li, Y.X. Tuo, P. Li, X.Z. Duan, H. Jiang, X.G. Zhou, Effects of carbon support on microwave-assisted catalytic dehydrogenation of decalin, Carbon. 2014, 67: 775-783.
[5]X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2, Appl. Catal. B 2014, 150: 396-401.
[6]W.Y. Chen, J. Ji, X.Z. Duan, G. Qian, P. Li, X.G. Zhou, D. Chen, W.K. Yuan, Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane, Chem. Commun. 2014, 50: 2142-2144.
[7]X.Y. Yang, G. Qian, X.Z. Duan, X.G. Zhou, Impurity Effect of L-Valine on L-Alanine Crystal Growth, Cryst. Growth. Des. 2013, 13: 1295-1300.
[8]Y. Xia, C. Fan, Z.L. Zhou, Y.A. Zhu, X.G. Zhou, Effect of Zn on the selectivity of Ru in benzene partial hydrogenation from density functional theory investigations, J. Mol. Catal. A-chem. 2013, 370: 44-49.
[9]G. Qian, Y.Y. Wu, X.Y. Yang, X.Z. Duan, X.G. Zhou, Effect of polymorphism on the purity of L-glutamic acid, J. Cryst. Growth. 2013, 373: 78-81.
[10]Z.T. Liu, X.Z. Duan, G. Qian, X.G. Zhou, W.K. Yuan, Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups, Nanotechnology. 2013, 24.
[11]J. Ji, X.Z. Duan, G. Qian, X.G. Zhou, D. Chen, W.K. Yuan, In Situ Production of Ni Catalysts at the Tips of Carbon Nanofibers and Application in Catalytic Ammonia Decomposition, Ind. Eng. Chem. Res. 2013, 52: 1854-1858.
[12]J. Ji, X.Z. Duan, G. Qian, P. Li, X.G. Zhou, D. Chen, W.K. Yuan, Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition, Catal. Today 2013, 216: 254-260.
[13]J. Ji, X.Z. Duan, X.Q. Gong, G. Qian, X.G. Zhou, D. Chen, W.K. Yuan, Promotional Effect of Carbon on Fe Catalysts for Ammonia Decomposition: A Density Functional Theory Study, Ind. Eng. Chem. Res. 2013, 52: 17151-17155.
[14]J. Fu, R.C. Shen, Z.M. Shu, X.G. Zhou, W.K. Yuan, Numerical Reconstruction of the Catalyst Bed Temperature Distribution in a Multitubular Fixed-Bed Reactor by Karhunen-Loeve Expansion, Ind. Eng. Chem. Res. 2013, 52: 7818-7826.
[15]H.Y. Cheng, Y.A. Zhu, P.O. Astrand, D. Chen, P. Li, X.G. Zhou, Evolution of Pt Nanoparticles Supported on Fishbone-Type Carbon Nanofibers with Cone-Helix Structures: A Molecular Dynamics Study, J. Phys. Chem. C 2013, 117: 14261-14271.
[16]H.Y. Cheng, P.O. Astrand, D. Chen, Y.A. Zhu, X.G. Zhou, L. Ping, Adsorption of a single Pt atom on polyaromatic hydrocarbons from first-principle calculations, Chem. Phys. Lett. 2013, 575: 76-80.
[17]X.Y. Yang, G. Qian, X.Z. Duan, X.G. Zhou, Effect of Impurity on the Lateral Crystal Growth of L-Alanine: A Combined Simulation and Experimental Study, Ind. Eng. Chem. Res. 2012, 51: 14845-14849.
[18]M.L. Yang, Y.A. Zhu, X.G. Zhou, Z.J. Sui, D. Chen, First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts, Acs Catal. 2012, 2: 1247-1258.
[19]Y. Xu, C. Fan, Y.A. Zhu, P. Li, X.G. Zhou, D. Chen, W.K. Yuan, Effect of Ag on the control of Ni-catalyzed carbon formation: A density functional theory study, Catal. Today. 2012, 186: 54-62.
[20]G. Qian, Y.Y. Wu, X.Y. Yang, X.G. Zhou, Exploiting polymorphism in the purity enhancement of lincomycin hydrochloride, Chem. Eng. Sci. 2012, 77: 42-46.
[21]C. Fan, Y.A. Zhu, Y. Xu, Y. Zhou, X.G. Zhou, D. Chen, Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study, J. Chem. Phys. 2012, 137: 014703.
[22]X.Z. Duan, G. Qian, X.G. Zhou, D. Chen, W.K. Yuan, MCM-41 supported Co-Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition, Chem. Eng. J. 2012, 207: 103-108.
[23]X.Z. Duan, G. Qian, J.H. Zhou, X.G. Zhou, D. Chen, W.K. Yuan, Flat interface mediated synthesis of platelet carbon nanofibers on Fe nanoparticles, Catal. Today. 2012, 186: 48-53.
[24]X.Z. Duan, G. Qian, C. Fan, Y. Zhu, X.G. Zhou, D. Chen, W.K. Yuan, First-principles calculations of ammonia decomposition on Ni(110) surface, Surf. Sci. 2012, 606: 549-553.
[25]X.Z. Duan, J. Ji, G. Qian, C. Fan, Y. Zhu, X.G. Zhou, D. Chen, W.K. Yuan, Ammonia decomposition on Fe(110), Co(111) and Ni(111) surfaces: A density functional theory study, J. Mol. Catal. A-chem. 2012, 357: 81-86.
[26]H.Y. Cheng, Y.A. Zhu, Z.J. Sui, X.G. Zhou, D. Chen, Modeling of fishbone-type carbon nanofibers with cone-helix structures, Carbon. 2012, 50: 4359-4372.
[27]M.L. Yang, Y.A. Zhu, C. Fan, Z.J. Sui, D. Chen, X.G. Zhou, DFT study of propane dehydrogenation on Pt catalyst: effects of step sites, Phys. Chem. Chem. Phys. 2011, 13: 3257-3267.
[28]Q. Li, Z.J. Sui, X.G. Zhou, Y. Zhu, J.H. Zhou, D. Chen, Coke Formation on Pt-Sn/Al2O3 Catalyst in Propane Dehydrogenation: Coke Characterization and Kinetic Study, Top. Catal. 2011, 54: 888-896.
[29]Q. Li, Z.J. Sui, X.G. Zhou, D. Chen, Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst, Appl. Catal. A 2011, 398: 18-26.
[30]J.X. Hou, G. Qian, X.G. Zhou, Gas-liquid mixing in a multi-scale micromixer with arborescence structure, Chem. Eng. J. 2011, 167: 475-482.
[31]X.X. He, C. Fan, X.Y. Gu, X.G. Zhou, D. Chen, Y.A. Zhu, Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0001) from first principles, J. Mol. Catal. A-chem. 2011, 344: 53-61.
[32]C. Fan, Y.A. Zhu, X.G. Zhou, Z.P. Liu, Catalytic hydrogenation of benzene to cyclohexene on Ru(0001) from density functional theory investigations, Catal. Today. 2011, 160: 234-241.
[33]C. Fan, X.G. Zhou, D. Chen, H.Y. Cheng, Y.A. Zhu, Toward CH4 dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth: A density functional theory study, J. Chem. Phys. 2011, 134: 134704.
[34]X.Z. Duan, G. Qian, X.G. Zhou, Z.J. Sui, D. Chen, W.K. Yuan, Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition, Appl. Catal. B 2011, 101: 189-196.
[35]Y.J. Cao, P. Li, J.H. Zhou, Z.J. Sui, X.G. Zhou, Pressure Drop and Residence Time Distribution in Carbon-Nanofiber/Graphite-Felt Composite for Single Liquid-Phase-Flow, Ind. Eng. Chem. Res. 2011, 50: 9431-9436.
[36]Y.J. Cao, P. Li, J.H. Zhou, Z.J. Sui, X.G. Zhou, Hydrodynamics and mass transfer in carbon-nanofiber/graphite-felt composite under two phase flow conditions, Chem. Eng. Process. 2011, 50: 1108-1114.
[37]Y.A. Zhu, D. Chen, X.G. Zhou, P.O. Astrand, W.K. Yuan, First-principles calculations of C diffusion through the surface and subsurface of Ag/Ni(100) and reconstructed Ag/Ni(100), Surf. Sci. 2010, 604: 186-195.
[38]L. Zhao, J.H. Zhou, Z.J. Sui, X.G. Zhou, Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst, Chem. Eng. Sci. 2010, 65: 30-35.
[39]X.Y. Zhang, G. Fevotte, L.A. Zhong, G. Qian, X.G. Zhou, W.K. Yuan, Crystallization of zinc lactate in presence of malic acid, J. Cryst. Growth. 2010, 312: 2747-2755.
[40]J. Zhang, W. Wu, G. Qian, X.G. Zhou, Continuous synthesis of methyl ethyl ketone peroxide in a microreaction system with concentrated hydrogen peroxide, J. Hazard. Mater. 2010, 181: 1024-1030.
[41]M.L. Yang, Y.A. Zhu, C. Fan, Z.J. Sui, D. Chen, X.G. Zhou, Density functional study of the chemisorption of C-1, C-2 and C-3 intermediates in propane dissociation on Pt(111), J. Mol. Catal. A-chem. 2010, 321: 42-49.
[42]L. Wen-Xin, Z.J. Sui, J.H. Zhou, P. Li, D. Chen, X.G. Zhou, Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst, Chem. Eng. Sci. 2010, 65: 193-200.
[43]F.L. Lou, Z.J. Sui, J.T. Sun, P. Li, D. Chen, X.G. Zhou, Synthesis of carbon nanofibers/mica hybrids for antistatic coatings, Mater. Lett. 2010, 64: 711-714.
[44]Z.W. Fan, X.G. Zhou, L.G. Luo, W.K. Yuan, Evaluation of the performance of a constructal mixer with the iodide-iodate reaction system, Chem. Eng. Process. 2010, 49: 628-632.
[45]X.Z. Duan, J.H. Zhou, G. Qian, P. Li, X.G. Zhou, D. Chen, Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition, Chinese J. Catal. 2010, 31: 979-986.
[46]Y.J. Cao, P. Li, J.H. Zhou, Z.J. Sui, X.G. Zhou, W.K. Yuan, Pressure Drop of Structured Packing of Carbon Nanofiber Composite, Ind. Eng. Chem. Res. 2010, 49: 3944-3951.
[47]Y.A. Zhu, D. Chen, X.G. Zhou, W.K. Yuan, DFT studies of dry reforming of methane on Ni catalyst, Catal. Today. 2009, 148: 260-267.
[48]J. Zhu, J.H. Zhou, T.J. Zhao, X.G. Zhou, D. Chen, W.K. Yuan, Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction, Appl. Catal. A. 2009, 352: 243-250.
[49]J.H. Zhou, M.G. Zhang, L. Zhao, P. Li, X.G. Zhou, W.K. Yuan, Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol, Catal. Today. 2009, 147: S225-S229.
[50]J.H. Zhou, C. Chen, R. Guo, X.C. Fang, X.G. Zhou, Synthesis and characterization of carbon nanofiber/alumina composite by extrusion casting, Carbon. 2009, 47: 2077-2084.
[51]P. Li, Q. Zhao, X.G. Zhou, W.K. Yuan, D. Chen, Enhanced Distribution and Anchorage of Carbon Nanofibers Grown on Structured Carbon Microfibers, J. Phys. Chem. C 2009, 113: 1301-1307.
[52]Z. J. Sui, Y. A Zhu, P. Li, X. G. Zhou, D. Chen, Catalysis and Kinetics: Molecular Level Considerations (Chapter 2: Kinetics of Catalytic Dehydrogenation of Propane over Pt-Based Catalysts), Advances in Chemical Engineering (Edited by Guy B. Marin), 2014, 44, 61-125
[53]X.Z. Duan, X. G. Zhou, D. Chen. Catalysis 25 (Chapter 4: Structural manipulation of the catalysts for ammonia decomposition). Royal Society of Chemistry. 2013, 118-140.
[53]X.Z. Duan, X. G. Zhou, D. Chen. Catalysis 25 (Chapter 4: Structural manipulation of the catalysts for ammonia decomposition). Royal Society of Chemistry. 2013, 118-140.
[55]周兴贵, 隋志军.《低碳烯烃催化技术基础》(谢在库主编)中“丙烷/异丁烷脱氢-氢氧化催化及反应工程的关键科学问题”. 中国石化出版社. 2013.

 



   
     
  版权所有 2014 化学工程联合国家重点实验室      State-Key Laboratory of Chemical Engineering
通讯地址:上海市梅陇路130号华东理工大学369#信箱      邮编:200237
电话:021-64253509      传真:021-64253528      Email:ahpan@ecust.edu.cn